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Figure 1: OmniActions contributes: (1) a design space of digital follow-up actions (b) derived from data collected during a five-day
diary study with 39 participants (a), and (2) a pipeline that takes multimodal sensory data (c) and contextual information (d) as
inputs, and predicts what digital actions users might take and on which specific information in the input they might take these
actions (e). The action prediction is guided by the design space.

ABSTRACT
The progression to “Pervasive Augmented Reality” envisions easy
access to multimodal information continuously. However, in many
everyday scenarios, users are occupied physically, cognitively or
socially. This may increase the friction to act upon the multimodal
information that users encounter in the world. To reduce such fric-
tion, future interactive interfaces should intelligently provide quick
access to digital actions based on users’ context. To explore the
range of possible digital actions, we conducted a diary study that
required participants to capture and share the media that they in-
tended to perform actions on (e.g., images or audio), alongwith their
desired actions and other contextual information. Using this data,
we generated a holistic design space of digital follow-up actions
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that could be performed in response to different types of multi-
modal sensory inputs. We then designed OmniActions, a pipeline
powered by large language models (LLMs) that processes multi-
modal sensory inputs and predicts follow-up actions on the target
information grounded in the derived design space. Using the em-
pirical data collected in the diary study, we performed quantitative
evaluations on three variations of LLM techniques (intent classifi-
cation, in-context learning and finetuning) and identified the most
effective technique for our task. Additionally, as an instantiation of
the pipeline, we developed an interactive prototype and reported
preliminary user feedback about how people perceive and react to
the action predictions and its errors.
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• Human-centered computing → User studies; Interactive
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1 INTRODUCTION
The progression towards “Pervasive Augmented Reality (AR)” en-
visions easy access to information in different modalities such as
text, images, or audio, anytime and anywhere [25]. However, in
many everyday scenarios within the real world, users are occupied
physically, cognitively or socially, which may limit the use of typi-
cal AR inputs such as hand gestures and speech. This can present
significant friction in interacting further with the information they
encounter in the world. For example, a driver noticing a movie bill-
board faces increased friction in (1) identifying the movie’s name
from the billboard and (2) searching for more details about the
movie, due to the cognitive and physical demands of driving. This
motivates in the need for future interfaces to intelligently reduce
friction in interacting with information [4].

Interactions with real-world information generally involve two
steps: (1) retrieving desired information (e.g., select the text on the
billboard) and (2) performing corresponding follow-up actions (e.g.,
searching for more details on Google). We envision that future
interfaces should be designed to simultaneously process multi-
modal sensory inputs, analogous to human sensory perception, and
proactively suggest follow-up actions on the target information.
This vision represents a more generalized approach than existing
approaches like iOS’ text-in-a-photo action suggestions1, Google
Lens2, or Shazam’s song recognition3, which recognize one spe-
cific modality of sensory inputs (e.g., structured text, images, or
audio) and map it to hard coded predefined actions (e.g., detecting
an address and launching a navigation app). However, to imple-
ment this more generalized vision, two main limitations need to be
addressed: (i) existing systems cannot predict follow-up actions on
aggregated data from multiple modalities and (ii) there is a limited
understanding of the range of actions users intend to perform dur-
ing real-world scenarios when using multiple modalities. The latter
is crucial for guiding the design of such systems, as it ensures that
their output is grounded in a known action space, thus enabling
the actions to be executable by the system.

Prior work has explored the design space of mobile and in-situ
information needs [13, 17], i.e.,when and how users needwhat types
of information. However, there is a limited understanding of the
action needs users have in-situ. To bridge this gap, we ran a forma-
tive workshop followed by a diary study to collect and identify the
actions people might take when interacting with multimodal infor-
mation. In contrast to collecting and reflecting on already captured
data in smartphones, the diary study prompted participants to ac-
tively capture fresh data immediately, i.e., the actions they intended
to take whenever they encountered new multimodal information.
This approach mirrored the way users interact with information

1https://support.apple.com/en-us/HT212630
2https://lens.google/
3https://www.shazam.com/

in AR settings, simulating an “always-on” audio-visual sensor. The
collected data (i.e., visual inputs such as scenes, physical objects,
texts, and auditory inputs such as acoustic sounds, human speech)
were then documented as images or text descriptions for further
analysis. Over the course of five days, 39 participants contributed
382 data entries. The collected data was then used to inform the
creation of a design space of possible follow-up actions that should
serve as a blueprint for the design of possible follow-up actions
that future interactive systems could incorporate (Figure 2e).

The design space was then used to inform the design of a pro-
totype called OmniActions, containing a pipeline which enables
the simultaneous processing of multimodal sensory inputs and
subsequent generation of follow-up action predictions on target
information (Figure 2f). Powered by a large language model (LLM),
OmniActions (1) converts multimodal sensory inputs into struc-
tured text via existing models (e.g., visual language models for
image captioning) and then (2) leverages the explicit reasoning of
the LLM [29] on the structured text to (3) predict target information
(e.g., the visible text) and follow-up actions (e.g., share with another
person) grounded in the design space (Figure 2g). To demonstrate
the effectiveness of our pipeline and explore the LLMs’ capabilities
to support such real-world tasks, we conducted an evaluation using
the empirical data collected from the diary study and compared
multiple techniques of using LLMs. We employed three variants of
using LLMs: conventional intent classification, in-context learning
with Chain-of-Thoughts (CoT) prompting, and fine-tuning with
CoT prompting. The results show that our approach yields com-
petitive performance. For instance, in-context learning with CoT
prompting using the latest LLM (i.e., GPT-4) achieved a high accu-
racy (94.3%) when predicting the top three possible general actions.
As an instantiation of the pipeline, we also developed an interactive
smartphone prototype for user interaction. We conducted an in-lab
feedback session with 5 participants to collect initial subjective
feedback about the system and insights to improve the design and
user experiences with the interactive prototype.

The contributions of this research are thus:

• A design space of follow-up actions that can be performed
in response to multimodal sensory inputs. This design space
was derived from the diary study data and surfaced 7 general
and 17 specific categories of follow-up actions.

• A novel pipeline, OmniActions, that provides generalized
predictions of follow-up actions for real-world multimodal
sensory inputs. OmniActions leverages the explicit reasoning
of LLMs (CoT) on structured text converted frommultimodal
data to ground the predicted actions in the design space.

• An evaluation of the approach enabled by empirical data col-
lected from the diary study using different techniques (i.e.,
in-context learning and fine-tuning). The results showed
competitive performance of the proposed approach. Addi-
tionally, the evaluation provided insights into LLMs’ capa-
bilities to support real-world tasks.

• An interactive smartphone prototype that predicted users’
target information and suggested follow-up actions. User
feedback highlighted the system’s potential and the design
space’s comprehensiveness.

https://doi.org/10.1145/3613904.3642068
https://doi.org/10.1145/3613904.3642068
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Figure 2: The development process for OmniActions. (a) An internal workshop was conducted to (b) generate informative
examples of situations when users may take using multimodal information. (c) The examples were used to inform and inspire
the participants during a diary study that (d) collected data when participants wished to take action using multimodal data.
(e) The follow-up actions submitted by participants were then analyzed and categorized into a design space. (f) The collected
data included contextual information that was used to train a prediction model that was (g) integrated within OmniActions to
predict multiple follow-up actions given multimodal information.

2 RELATEDWORK
The present research was inspired by prior work on users’ mobile
information needs, multimodal information interaction techniques,
and the use of large language models to augment interaction.

2.1 Mobile Information Needs
Information needs, defined as "any information that is required for a
task, or to satisfy the curiosity of the mind, regardless of whether the
need is satisfied or not" [17], is closely related to how users interact
with real-world information. Researchers have conducted various
diary studies [3, 9, 11, 13, 14, 17, 28, 35, 59] to understand users’
information needs under different contexts, including while using
mobile phones [11, 14, 28], seeking information within a social
network [17] or being on-the-go [9, 59]. While this presents similar
use cases as what we expect to encounter in pervasive AR systems,
existing research majorly focuses on what types of information
users require, and how their contexts affect their needs. However,
there is a notable gap in understanding the next phase of address-
ing actions needs: what types of actions users might take once their
information needs have been met. Perhaps most related is prior
work by Church et al., which explored the types of searches (i.e.,
informational, geographical, or personal information) associated
with different contexts [14]. The scope of these follow-up actions,
however, was limited to searching for target information, rather
than to a broader range of actions that could be performed with the
information. To bridge this gap, OmniActions aims to understand
what actions users might take once they have access to the infor-
mation they need. We envision the potential for OmniActions to
enable rich contextual understanding in future AR scenarios, there-
fore, we focus specifically on the real-world information that can

be perceived by the sensors on an AR device when using different
modalities.

2.2 Multimodal Information-Based Interaction
Techniques

To predict follow-up actions while encountering new information
in the wild (e.g., music, noise, visible text, objects, etc.), it is crucial
that systems are able to understand the context of one’s environ-
ment and the information that is available to users. One way to
obtain such an understanding is to directly retrieve information
that is embedded in barcodes, fiducial markers [22], human faces
[2], or objects during fabrication processes [19, 20, 38]. Researchers
have also explored retrieving "raw" information such as visible text
[54, 66], physical objects [23, 51], multimodal scenes [65], human
speech (e.g., Google API4), and music (e.g., Shazam). Nevertheless,
to understand users’ intent based on the information in their phys-
ical environments, multimodal information must be monitored and
processed in a way that a system can make predictions using it.

Lifelogging digitally tracks a person’s daily experiences and is
one way to process multimodal information [26, 36]. Prior work has
used lifelogging to enhance human memory by retrieving moments
through natural language [21, 57] or monitor one’s health by ana-
lyzing logged data [37]. However, lifelogging does not specifically
focus on predicting a user’s intent and to predict follow-up actions,
which requires the categorization of the design space. Several lifel-
ogging datasets have been collected, including the Aria dataset [42],
Ego4D [24], and other video datasets [52, 53]. These datasets could
be used to investigate desired follow-up actions, but they contain
redundant data when such actions are not required. To specifically
4https://cloud.google.com/speech-to-text
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explore follow-up actions with multimodal information, we con-
ducted a diary study prompting participants to log data whenever
they wanted to act on their captured information. Building on prior
research on processing multimodal information, we used this data
to develop a system capable of predicting follow-up actions.

2.3 Large Language Models in HCI
Artificial Intelligence (AI) has been widely used in the Human-
Computer Interaction (HCI) community, with LLMs experiencing a
surge of usage in recent years [1, 16, 27, 31–33, 48, 49, 60–62]. LLMs’
abilities to understand common knowledge and reason within a
given context have been leveraged for interactive code support
[60], social computing [47, 48] and accessibility support [30]. For
example, Visual Caption employed a fine-tuned language model
to predict user intent during visual inquiries using the last two
sentences [41], while SayCan extracted and leveraged knowledge
priors within LLMs to reason about, and execute, robot commands
[1]. LLMs have also been used to enhance recommender systems
that utilize contextual information to recommend items [7, 34]. For
example, GPT-3 [6] was used to augment movie recommendation
systems [67].

Most of this prior work relied on the capture of one’s explicit
intent [10], wherein users or agents interacted with a system via
direct prompts. OmniActions unlocks a new interaction method
with LLMs by embracing a more implicit intent, focused on the
user’s current visual input (e.g., multimodal information such as
environmental understanding or recognized text) and contextual
information. Coupled with the Chain-of-Thoughts prompting, this
enables OmniActions to deliver explainable predictions of target
information and follow-up actions.

3 FORMATIVE WORKSHOP
We ran a formative workshop to obtain a preliminary understanding
about the multimodal information triggers people came across in
everyday life and their follow-up actions. The outcomes of the work-
shop were clusters of the actions participants took with multimodal
information triggers. The learnings on the workshop informed our
method choices, question design, and example generation for the
next study to collect data from general population.

3.1 Procedure
We recruited 10 participants within our institution through group
email invitations. The participants included HCI researchers, UX
designers, and student interns, all of whom worked within the
domain of AR and XR. Their expertise would provide insights on
how people may interact with information in the physical world.
The participants volunteered to join the workshop and they were
not paid. The workshop consisted of three parts and lasted one
hour in total. Participants were invited to use a FigJam5 whiteboard
for synchronous collaboration.

3.2 Process
The organizer of the workshop first introduced the goal and agenda
of the workshop to the participants. Then they shared two examples

5https://www.figma.com/figjam/

Figure 3: Screenshots from the formative workshop where
participants shared data in Session 1, reviewed other par-
ticipants’ data in Session 2, and grouped similar actions in
Session 3.

with the participants, including a parking ticket and an audio file
of some background music, and their related context and follow up
actions. During Part 1, participants were asked to share their own
media, context, and follow-up actions. During Part 2, participants
reflected on other participants’ media and came upwith their follow-
up actions. In Part 3, participants collaboratively clustered similar
actions (Figure 3).

3.2.1 Part One. “Browse past media, share those that you did follow-
up actions with”. During this part, participants had 20 minutes to
browse their personal media storage and upload the ones that they
took actions with to shared Google drive and the FigJam board. For
each shared media item, participants were asked to recall the record
the following information: (i) what target they acted on (e.g., the
menu of a boba shop), (ii) what action they took (e.g., save to the
album for future reference) and (iii) contextual information such as
the location or their activity, which is useful in the next part. For
audio and video uploads, the participants described them textually
on the FigJam board. Participants shared a total of 66 examples (i.e.,
6 video/audio clips and 60 images) and 66 follow-up actions.

3.2.2 Part Two. “ Imagine if you were the person at the scene, what
actions you would take on the information?” In this part, we aimed
to get third-person perspective on what the possible actions could
be given the media. Contextual information from part one helps
other participants to imagine the scenarios. Participants had 20
minutes to browse examples shared by other participants and to
type their imagined follow-up actions for the target information.
An additional 104 follow-up actions were proposed, with a total of
170 follow-up actions between session one and two.

3.2.3 Part Three. “Now group together those actions that are similar.”
In Part 3, participants had 15 minutes to collaboratively cluster and
label all 170 examples from Part 2, using an affinity diagram.
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Figure 4: Frequencies of the 13 follow-up actions generated
during the workshop (n = 170) that were grouped into 4 cate-
gories.

3.3 Results
After the workshop, two researchers coded, filtered, and clustered
the 170 follow-up actions independently. The participant-generated
clusters were also referenced in this process. This process was
inductive, meaning that they coded actions mentioned by the par-
ticipants, rather than starting with an existing set of actions. The
results from each researcher and the clusters from participants were
compared. The researchers discussed and resolved the discrepan-
cies in the clusters’ boundary, naming, and granularity. As a result,
they identified 13 types of actions that were grouped into four cate-
gories (i.e., share, save, query, and others; Figure 4). Representative
examples from these categories were used as learning materials for
participants in our subsequent diary study.

One important observation was that participants seldom cap-
tured or shared audio. This might be due to the fact that audio
contains temporal information that is hard to capture (e.g., an ab-
normal sound that occurs intermittently). This finding informed
the design of the diary study, where we asked participants to share
the textual description of their audio rather than the audio itself.
We present more details in the next section.

4 DATA COLLECTION VIA A DIARY STUDY
While the workshop provided an initial glimpse of the type of
multimodal information and follow-up actions users would desire,
we wanted to formalize the findings with in-situ experiences from
participants external to our institution. The use of a diary study
methodology would enable participants to log data whenever needs
arose [59], making it an ideal choice to examine desired follow-up
actions when one encounters new information. We leveraged this
methodology to answer the following research question:
RQ: What follow-up actions do general users wish to take when

they encounter new multimodal information in a real-world
environment?

We adopted the snipped-based diary technique proposed by Brandt
et al. [5] to collect data about users’ follow-up actions with mul-
timodal information. As opposed to reflecting on captured data
(e.g., images in the album) at a fixed time of day, our participants
were asked to log data whenever they encountered information
in the world they wished to take action upon. This simulates the

“always-on” feature of an AR platform where users can interact
with AR interfaces anytime and anywhere. We collected the data
including (i) the target information they wished to take action on,
(ii) the desired follow-up actions and (iii) contextual information
such as their goals, locations, and activities. Contextual information
was important to collect as it could affect the choice of follow-up
actions [8, 39, 55]. For example, looking at a shampoo bottle in a
drug store has a different desired follow-up action than looking
at the same bottle at home (e.g., comparing the price to a similar
product versus ordering another bottle on Amazon). Therefore, we
hypothesized that contextual information would increase a sys-
tem’s ability to accurately understand users’ goals and follow-up
actions. We incorporated this information into a predictive model
later on in our research process.

4.1 Participants
Thirty-nine participants (i.e., 16 male, 22 female, and 1 non-binary)
were recruited from the dscout user research platform6. All partici-
pants were between the ages of 18 to 69 years old, were proficient
in English, and had a smartphone to take photos. Each participant
was compensated $50 USD after they completed the diary study for
their time.

4.2 Procedure
The diary study consisted of two phases, i.e., an introductory phase
and a diary phase. During the introductory phase, participants were
shown examples from the workshop that represented several of
the categories of media and actions that the workshop participants
identified. Note that to avoid bias due to the categorization that
resulted from the workshop, participants were only shown the
exemplar media and follow-up actions.

During the diary phase, participants were instructed to submit
2 entries each day for five days. These entries needed to reflect
genuine participant needs that occurred in the moment. The diary
phase began in the middle of the week and extended over the
weekend to capture the different types of needs that may occur
throughout a week. For each diary entry, participants were required
to answer questions about their entry (Figure 5). These included:

Media Containing the Information (Q1, Q2). Although we aimed
to collect multimodal information, we were not allowed to collect
audio or video data from participants that could contain potentially
identifiable personal information due to the legal requirements of
our institution. Therefore, if participants wanted to share audio
or video, they were asked to provide a text description of the data
or screenshots of the videos instead (e.g., “This is the background
music I heard in the cafe”).

Contextual Information (Q3, Q4). Context was first introduced
by Schilit et al. as “locations, identities of nearby people and objects,
and changes to those objects” [56]. To predict follow-up actions, we
identified how the location and the user’s activity would affect how
users would interact with the encountered information.

Target Information (Q5, Q6). Since we were investigating follow-
up actions for multimodal information, it was essential to know

6https://dscout.com/
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Figure 5: An example diary entry from the diary study.

which information the participant wanted to perform follow-up
actions for. For example, participants could be interested in only the
text visible in an image or the entire scene. Participants were thus
asked to identify the objects visible in the image or the sounds that
could be heard (Q5). This provided additional context to achieve a
better understanding of potential user interactions with the infor-
mation.

Actions to be Taken (Q7, Q8). Participants were asked to use nat-
ural language to describe the actions they intended to take and
then categorize these actions. Additionally, they could select cate-
gories corresponding to these actions using the action categories
identified in the workshop. Participants also had the option to cre-
ate new categories by selecting ’other’ if there were actions that
did not fit within the existing categories. Note that we minimized
potential bias by asking participants to detail their intention and
desired actions in their own words on a first page before being
shown and asked to choose from the action types on the next page.
Participants selected categories that were later used as a reference
point during the iteration towards the final design space presented
in the following sections.

High-Level Goal and Reasons (Q9). To better understand why
participants intended to take certain follow-up actions, we asked
participants to share their high-level goals and reasons for doing
so.

4.3 Data Summary
During the study, two participants did not finish the number of
required data entries (one only submitted 7 and the other only 5)
and they were compensated $5 per submitted entry. This resulted
in 382 data entries in total. The ratio of collected visual to audio
data was approximately 2:1. We collected 254 visual data examples
(i.e., 193 photos and 61 videos with visual selected as the target
information type) and 128 audio data examples (i.e., 48 videos with
audio as the target information type and 80 text descriptions of
audio). Participants reportedwanting to take action on 55 full scenes
(40 photos / 15 videos), 120 individual objects (96 photos / 24 vidoes),
79 pieces of text (57 photos / 22 videos), 51 speech clips (20 videos
/ 31 audio only), and 77 sound clips (28 videos / 49 audio only).

Additionally, participants shared 17 (i.e., 10 visual, 7 audio) follow-
up actions which did not fit within any of the categories identified
during the workshop.

4.3.1 Contexts of the Captured Data. We coded and summarized
the contexts when people came across multimodal information that
they intended to take follow-up actions based on survey answers in
Q3 and Q4. Figure 6 shows the diversity of location and contextual
activities people had. We consider our dataset to be representative
to a day in the life, based on the comparison to the American Time
Use Survey (ATUS, from U.S. Bureau of Labor Statistics) [44]. The
diversity of the contextual activities included all activity categories
mentioned in the 2022 ATUS survey [44] except "sleeping" (not
applicable to our study), "caring for non-household members", or
"organizational, civic, and religious activities". The latter two cat-
egories together accounted for 0.5 hours per day per person on
average. Most (77%) of the in-situ capture about people’s follow-up
actions needed had other contextual activities, out of which 24%
were low-demanding activities and 39% were high-demanding ac-
tivities that require full body motion or high cognitive focus, and
13% involved both types of contextual activities. This showed the
pervasiveness of multitasking situations where people’s physical
and cognitive bandwidth were already used for other activities.
Therefore, it was important to reduce the friction for people to use
follow-up actions.

5 DESIGN SPACE OF FOLLOW-UP ACTIONS
Following the diary study, a researcher and research assistant collab-
oratively reviewed the diary entries, coded the data, and compared
and consolidated the codes through iterations. The resulting ac-
tion space consisted of 7 general categories of follow-up actions,
including share, save, remind, look up, digital extract, media manip-
ulation, and complex actions. These categories were further divided
into 17 specific categories (Figure 7).

For the general categories, (1) Share refers to actions that users
employ to make information available to others (i.e., sending infor-
mation to friends or family or posting the information on a social
media platform such as Instagram or Facebook); (2) Save refers to
the actions used to store information; (3) Remind refers to actions
that created an alert or notice to remember something later such
as setting a reminder after seeing a flight schedule on a screen or
noting oneself of the date of a specific event (particularly useful for
managing tasks, appointments, or important events); (4) Look up
refers to actions that searched for specific information or details;
(5) Digital extract refers to actions taken to obtain and utilize in-
formation from multiple sources; (6) Media manipulation refers to
actions that altered or modified media content to achieve a specific
outcome, and (7) Complex actions involve processing data from
multiple sources. Figure 7 lists the definition of the 17 specific cate-
gories; please refer to Appendix C.2 for more detailed explanation.

5.1 Analysis of Diary Data Using the Design
Space

We conducted a post-study analysis on the diary study data using
the categories within the design space (Figure 8). The share (45.9%),
save (47.4%), and look up (32.1%) actions were most common general
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Home
49%

Third Space:
19%

Other:
24%

Work
8% Home

Third space: restaurant, events and
parks, outdoor space, school

Other: shop, gym, on commute,
hotel; dr's office, other's homes.

Work

(a) The location distribution of our dataset.

Low-demanding 
activities

24%

High-demanding 
activities

39%

Multiple contextual 
activities

14%

None
23%

Low-demanding activities

High-demanding activities

Multiple contextual activities

None

(b) The activity distribution of our dataset.

Figure 6: In (a), third space refers to the places outside of home or work where people have the potential opportunity to socialize
and engage with the community [45]. In (b), the low-demanding activities include: Sedentary leisure activities (i.e. watching
TV, browsing social media, browsing news, drawing, reading), Eating/drinking, Waiting, Sedentary housework (i.e. checking
emails, online payments, online shopping, personal care); The high-demanding activities include: Interacting with someone,
Physical housework (i.e. cleaning, cooking, organizing, maintaining, getting mails, gardening), Full-body movement activities
(i.e. walking, working out, playing), Focused activities (i.e. driving, studying, working), Shopping in a store, Preparing with
time pressure, Exploring and navigating environment.

Figure 7: Design space of follow-up actions for multimodal information that emphasizes general and specific categories of
actions.

actions while the remainder of the actions (i.e., remind (4.5%),media
manipulate (2.8%), digital extract (12.3%), complex actions (2.1%))
were less common (Figure 8a). Figure 8b shows the frequencies
of each specific action. Within the data, we also observed that
participants tend to takemultiple actions in succession. For example,
participants remembered a memorable moment and then shared
it with family members. Specifically, 183 diary entries had only

one action, 147 had two actions, 44 had three actions and 8 had
four actions. An example with four aggregated specific actions is
illustrated in Appendix D.

Participants also used different patterns of follow-up actions
when interacting with data from different modalities (Figure 8c).
The overall frequency of specific follow-up actions when the target
was visual versus audio were similar, although there appears to be a
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Figure 8: (a) The frequencies of the general actions. (b) The
frequencies of the specific actions (with number). (c) The
frequencies of the specific actions on visual and audio. Fre-
quency was computed as the number of appearances divided
by the total number of diary entries.

difference when sharing on social media, saving to a list, recognizing
and transcribing. These variations align with typical real-world
interactions. For example, people often share visual content (e.g., a
breathtaking landscape or an unusual statue) on social media, while
it is less common to post specific sounds (e.g., an abnormal noise)
in an environment. Additionally, as described earlier, transcribing
is exclusive to audio. Furthermore, our data showed a trend where
individuals recognized and saved music to their playlists upon hear-
ing a song they enjoyed. This reflected how people interact with,
and respond to, real-world audio data, which also leads to a higher
frequency of saving for reference actions in similar scenarios.

6 OMNIACTIONS PIPELINE
To reduce users’ frictions to access follow-up actions triggered
by the multimodal information in the world, we create OmniAc-
tions. The pipeline of OmniActions senses and processes different
multimodal information, and predicts the target information and
follow-up actions grounded in the action space, which is based on
the empirical data. Moreover, by reasoning with multimodal and
contextual information, this pipeline aims to enhance explainability
and model performance.

To achieve this, OmniActions consists of three steps (Figure 9):

(1) OmniActions converts raw multimodal data (i.e., visual and
audio data) into structured text by leveraging existing mod-
els.

(2) OmniActions then performs intermediate explicit reasoning
on the structured text via Chain-of-Thoughts (CoT) prompt-
ing. The training data for this prompting was grounded in
the data from the diary study.

(3) Finally, OmniActions predicts the target information (i.e., the
whole scene, physical objects, text, sounds, or speech) and
the follow-up actions grounded in the design space using a
large language model (LLM).

6.1 Converting Multimodal Data into
Structured Text

For a model to process information in multiple modalities simul-
taneously and perform predictions, it is essential to convert the
multimodal data into a unified representation format (e.g., a textual
representative or a joint embedding space). This would enable a
model to identify and learn from patterns in the multimodal input.
To enable explicit reasoning for prediction, OmniActions converted
multimodal data into a textual representation. Specifically, Omni-
Actions leveraged existing models to convert both visual and audio
data into structured text before performing CoT prompting-based
reasoning steps. All the converted data for each entry was stored
in JSON format for explicit reasoning. Note that our pipeline aims
to demonstrate potential using currently available data and could
be adapted to broader range of modalities in the future.

6.1.1 Visual Information. Aligning with the findings from our di-
ary study, OmniActions supports three aspects of visual informa-
tion: the overall scene, physical objects, and any visible text. For
the overall scene, OmniActions leverages recent advancements in
multimodal learning frameworks that have shown competitive per-
formance in describing a scene with text. In this implementation,
we used an open-source, state-of-the-art image captioning model,
InstructBLIP [15], with the prompt of “Write a short description
for the image.”. For the physical objects and visible text, OmniAc-
tions used the Detectron2 object detection model [64] to detect the
objects and Google Cloud Vision7) to recognize the text.

6.1.2 Audio Information. OmniActions classified the type of acous-
tic sounds via YAMNet8 and used speech-to-text models to tran-
scribe human speech. As our institution would not permit the collec-
tion of personal identifiable information, we were unable to collect
human speech data during the diary study. As a result, the evalua-
tion of our model’s capabilities does not incorporate transcribed
speech.

6.1.3 Explicit Contextual Information. As context affects the ac-
tions people perform using the information they have available
to them, OmniActions leveraged the data collected during the di-
ary study, i.e., where participants were and what were they doing
when encountering the information. However, such contextual in-
formation may not always be available in practice, and thus this is
optional to include in our pipeline. We examined the impact of the
contextual information on the prediction performance in Sec. 7.4.

6.2 Generating Chain-of-Thoughts Prompts
Traditional classification methods typically rely on trained models
like black boxes. To enhance explainability, a model should explain
the rationale behind its predictions for certain follow-up actions.
Ideally, this reasoning should be as close to a user’s reasoning as

7https://cloud.google.com/vision/docs/ocr
8https://github.com/tensorflow/models/tree/master/research/ audioset/yamnet
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Figure 9: OmniActions processes multimodal information (a) by converting it into structured text using existing models (b). It
processes visual data using multimodal models, object detectors, and OCRmodels and processes audio data via sound classifiers
and speech-to-text models. Then, OmniActions performs an explicit reasoning using Chain-of-Thoughts prompting (c) and
predicts target information and follow-up actions (d).

possible. This is especially important when there are multiple ac-
tionable information items captured and the user’s intention is not
clear from the sensor data itself. For example, in Figure 5, the person
captured an image with multiple texts (including the brand name,
the jean’s name and the size etc.), but the user only intends to search
more information about the specific jean’s sizes, rather than the
brand name. Such reasoning could be instrumental for subsequent
interactions, such as deciding which target information to search.
OmniActions addresses this by introducing CoT prompting [63] as
an intermediate reasoning step through the prompting and training
process (Figure 9c).

One of the challenges is the generation of CoT prompts. Prior
work mostly leveraged zero-shot prompting (i.e., using prompts
such as "let’s think step-by-step") or researcher-crafted prompts
for in-context learning. However, these approaches rely on either
common sense reasoning or researcher reasoning, which may not
represent how our participants reasoned within their context.

To address this, we leveraged the data collected during the di-
ary study to generate CoT prompts in empricial data. During the
diary study, we collected participants’ high-level goals and reasons
(Sec. 4.2 (Q9)) to understand the rationale behind their intended
follow-up actions. We convert these reasoning from first-person
perspective to third-person perspective for the CoT prompts. In
the above example, the participant shared their reasoning in the
survey (Figure 5):

“I found a pair of pants that fit me well and I liked the
style, but I didn’t like the holes in the pants. I wanted
some without holes. So I took a pic of the size and
style and plan to look it up online to see if there are
any other options I like better.”

The above data were used to generate the CoT reasoning as follows:
“The user was shopping for pants at American Eagle

and found a pair they might like. They took a picture
of the label, which includes the style and size of the
jeans. They may want to look up more information
about the specific style of jeans, such as reviews or
other colors available.”

Weprompted the LLM to generate the CoT prompts for themodel
as the ground truth label for each data point collected during the
diary study. Specifically, the prompt consisted of the list of actions
with the respective description (Figure 7) ground truth action label
and the participants’ responses for their goals and reasons. The
template used to generate the CoT prompts is in Appendix A.1.

7 IDENTIFY THE BEST PERFORMANT LLM
TECHNIQUE

7.1 LLM Techniques and Implementation
With the OmniActions pipeline, we aim to predict the intended
action on multimodal information. Recent LLMs’ advancements has
shown various techniques’ competitiveness for new tasks, such as
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in-context learning and fine-tuning. To identify the best-performant
among the state-of-the-art LLM techniques for OmniActions and
draw insights in exploring LLMs’ capabilities in addressing the
target task, we use the empirical data collected from the diary
study to evaluate the performance of the pipeline using different
techniques.

Specifically, we employed three different LLM techniques to
predict the intended actions: (i) intent classification, (ii) in-context
learning with chain-of-thoughts prompting, and (iii) fine-tuning
with chain-of-thoughts training data. We first discuss the rationale
for choosing these methods and then explain them in detail.

7.1.1 Conventional Intent Classifier. Prior research in Natural Lan-
guage Processing (NLP) has explored numerous methods of classi-
fying text-based data for different tasks, including intent classifica-
tion [40] or sentiment analysis [46]. One key advantage of this is
the potential use of smaller models (e.g., BERT [18] or LSTM [50])
for lower cost and faster execution.

To maintain consistency in our comparison, we fine-tuned a
pre-trained LLM (davinci from OpenAI) to perform the intent clas-
sification. The davincimodel has a smaller size compared to other
GPT-3.5 models that support fine-tuning and it outputs logprobs,
which provide confidence scores for different action predictions,
enabling us to rank the top-n likely actions, similar to traditional
classification models. As shown in Figure 10, to prepare the training
data we formatted the structured text into a tuple as the input for
each data entry and use the target label (i.e., target information or
the action) as the output. We then used this data to fine-tune the
LLM in the legacy prompt-completion9 way. Specifically, we used
75% of the data entries from the diary study for training and the
rest for evaluation.

7.1.2 In-Context Learning with CoT. In-context learning, also known
as few-shot prompting, is a popular method for adapting LLMs to
new tasks [6]. This technique provides a few examples illustrating
the task, specifying both the input format and expected output,
without changing the model’s parameters (i.e., gradients) for new
tasks. This is the key benefit that it does not require a large amount
of data for training, thus making it potentially more adaptable to
new tasks.

To enhance the explainability of the prediction, we provided
exemplar data to instruct the LLM to produce intermediate rea-
soning (CoT) prior to the final action prediction. We used both
GPT-3.5-turbo and GPT-4 as the model for the few-shot prompt-
ingmethod. As shown in Figure 10, besides the converted structured
text as the input, we also provide task descriptions and several ex-
amples illustrating the exemplar input and output. Specifically, the
task description defines the role of the system and leverages the
definition of the predicted labels from the design space (e.g., defini-
tion of specific actions in Figure 7). For the prediction of follow-up
actions, Since our design space consists of 17 specific categories, we
include 9 data entries which cover all the categories in the prompt,
and the rest 373 data entries are used for evaluation. For detailed
prompts, please refer to Appendix A.3.

9https://platform.openai.com/docs/guides/legacy-fine-tuning

7.1.3 Fine-Tuning with CoT. Different from in-context learning,
fine-tuning an LLM would change the model’s parameters to spe-
cialize it for the target task. This was accomplished by feeding
additional training data into a pre-trained model, updating the
model’s gradients, i.e., fine-tuning. The key benefit of this approach
is that it enables the model to be exposed to a broader range of
examples, and could thus potentially identify and learn more intri-
cate patterns for better performance. However, the drawback is its
reliance on a large amount of training data.

As shown in Figure 10, for each data entry, we provided the
structured text and the task description as the input and used the
generated CoT and target label as the output. We used 75% of the
data entries for training and the rest for evaluation. As GPT-4 did
not publicly support fine-tuning at the time of this paper’s prepara-
tion10, we used GPT-3.5-turbo for the fine-tuning approach.

7.2 Performance Evaluation - Accuracy
The two tasks: (i) predicting the target information and (ii) predict-
ing the follow-up actions, were performed in parallel and thus we
evaluate them separately.

7.2.1 Accuracy When Predicting Target Information. Target infor-
mation prediction is amulti-class classification task, where the target
modality was one of five modalities: the whole scene (e.g., capture
the whole moment or share a view with friends), physical objects
(e.g., recognizing a specific product and search online), the text
visible in a visual (e.g., save a promo code on a gift card), speech
(e.g., transcribe the teacher’s lecture), or acoustic sound (e.g., recog-
nize background music). As 80 diary entries were audio-only and
there was only a text description of the audio without any visual
information, we decided to separate the target modality prediction.
Specifically, we implemented a three-class classification (scenes, ob-
jects, and text) for visual information, and a two-class classification
(speech and sounds) for audio.

Table 1: Accuracy (%) when predicting the target information.

Approach Visual Audio

Intent classification 70.6 92.3

In-context learning (w/ CoT) 62.3 90.1
Fine-tuning (w/ CoT) 70.7 90.9

We measured the accuracy of the the three techniques. For intent
classification and finetuning, we used 75% of the data entries for
training and the remaining 25% for testing. For in-context learning,
we used five data entries from the training set representing each
target information modality as the few-shot examples and tested
on the rest data (377 entries). The results showed that all the ap-
proaches could achieve competitive performance when predicting
the target information (Table 1).

7.2.2 Accuracy When Predicting Follow-Up Actions. As users may
performmultiple actions using the same information, the prediction
of follow-up actions is a multi-label classification task, meaning

10as of December 11th, 2023
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Figure 10: Data preparation and processing for each technique. Intent classification and finetuning used input-output pairs for
training, while in-context learning required only a few task examples.

each data entry may contain multiple ground truth labels. Thus, we
evaluated the model’s accuracy when predicting the top-N most
likely predictions (N = 1, 2, 3). It is important to note that, in the
current setup, the accuracy of predicting the follow-up actions
is not affected by the target information prediction as these two
evaluations are conducted in parallel. We used the full-matchmetric
to represent the accuracy of the prediction (i.e., the ratio of correct
predictions to the minimum of ground truth labels or predictions),
to demonstrate the alignment between the predictions and ground
truth labels. The accuracy was calculated using a sample average:

Accuracy =
1
𝑁

𝑁∑︁
𝑖=1

𝐶𝑖

min(𝐺𝑖 , 𝑃𝑖 )
(1)

where 𝑁 was the total number of test data samples, 𝐶𝑖 repre-
sented the number of correct predictions for the 𝑖-th data sample,
𝐺𝑖 represented the number of ground truth labels for the 𝑖-th data
sample, and 𝑃𝑖 represented the number of predictions made for the
𝑖-th data sample.

Besides the three approaches, we also calculated the accuracy of
a model when it always predicted the top-N most frequent actions
as it might achieve high accuracy due to imbalanced distribution
of the data. However, this does not make such a model good, as it
will never be able to predict actions other than the most dominant
ones. Please refer to Appendix Figure 1a for the confusion matrix
of this approach.

Results. The results shown in Table 2 demonstrated that in-
context learning with the latest LLM (GPT-4) outperformed all
other approaches. Notably, it achieves very high accuracy on gen-
eral actions when predicting the top three possibilities (94.3%) and
marked an improvement of 11.6% on specific actions over the next

best-performant approach: fine-tuning with GPT-3.5 (from 60.1% to
67.1%). Additionally, the results show that finetuning works better
on specific actions (13.8% improvement) than on general actions
(6.3% improvement) when predicting top-3 likely actions using the
same model (GPT-3.5). This is likely due to the dominance of cer-
tain categories in general actions and data-driven approach like
finetuning is more sensitive to the data distribution. For detailed
data, please refer to Appendix Table 4.

7.3 Confusion Matrices of Predicting Follow-up
Actions

Besides the overall prediction accuracy, it is also important to an-
alyze the error – how does the model behave when predicting an
incorrect label. We generated confusion matrices for the approaches
to visualize the model behavior when predicting the top-3 actions
(Figure 11). Specifically, we visualized the confusion matrices of
the best-performant approach (i.e., in-context learning using GPT-4)
in this section. Due to the imbalanced distribution of the data, we
normalized the confusion matrix by the number of appearances of
each label. For details on creating these matrices and matrices for
other approaches, please refer to Appendix B. Note that since we
only have one data entry for the Calculate action in the specific
category and we have included that in the prompt, there is no data
entry for this action in the evaluation set in this approach.

Results. The result shows a competitive performance using the
in-context learning approachwhen sufficient examples are provided
to cover the diversity of the actions. This highlights the importance
of data diversity and the potentials for expanding the action space as
interaction platforms and techniques evolve. Regarding the data dis-
tribution, even without explicit awareness of it, the model performs



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Jiahao Nick Li, Yan Xu, Tovi Grossman, Stephanie Santosa, and Michelle Li

Table 2: Overall accuracy (%) when predicting follow-up actions using the full-match metrics.

Predicting General Predicting Specific
Approach / Num of Predictions 1 2 3 1 2 3

Top-n dominant categories 47.4 61.3 78.1 39.3 45.3 54.8
Intent classification 46.0 61.1 83.1 41.7 40.6 54.3
Finetuning (GPT-3.5) 57.7 67.2 84.9 48.1 50.2 60.1

In-context learning (GPT-3.5) 57.9 65.2 78.6 36.4 40.1 46.3
In-context learning (GPT-4) 60.3 69.9 94.3 44.4 52.9 67.1

*All approaches except intent classification adopt chain-of-thoughts.

*Top-3 general actions (in order): Save, Share, Look up. Top-3 specific actions: Share with others, Save for reference, Search online.

*In-context learning (GPT-4) is tested on 373 data entries.

Figure 11: Confusion matrices using in-context learning (GPT-4) to predict the top-3 actions.

better on the dominant ones (e.g., actions in the general share and
save categories), while it performs worse on the less dominant ones
(e.g., specific actions like extract and access or compare). This shows
an alignment between the data collected from the general users and
the world knowledge that the model was trained on. To increase
the model’s performance on less dominant categories, soliciting
more data for certain actions might be necessary. A future direc-
tion could involve collecting more high-quality data, which can be
used to enrich the prompts for the in-context learning approach or
employed for finetuning the model.

7.4 Ablation to Understand Explicit Contextual
Information and Modalities

The role of contextual information in the model’s performance was
another crucial aspect to consider. In our evaluation, we utilized
data from the diary study assuming that the context was known,
however, contextual information might not be readily available

Table 3: Accuracy (%) for the in-context learning approach
with and without explicit contextual information while pre-
dicting three specific actions.

W/O
Context

Location
Only

Activity
Only

Full
Context

Audio only 47.5 47.7 59.7 60.0

Visual only 55.1 59.1 67.5 70.8

All data 52.5 55.2 64.9 67.1

in practical scenarios. To understand its impact, we conducted an
ablation test using the best-performing approach (i.e., in-context
learning with GPT-4), focusing on the two types of contextual infor-
mation considered. We then computed the accuracy to assess the
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impact (Table 3). Furthermore, we also examined how themodel per-
forms on visual and audio data separately to gain insights whether
contextual information are important for certain modalities.

The result shows that the model’s performance was improved
by 27.8% when the full context was provided compared to when
no context was provided. Within the contextual information, the
activity information contributed more to the model’s performance
than the location information (23.6% improvement for activity and
5.1% for location), especially for audio data (25.7% improvement).
Besides the contextual information, the result also shows that the
model performs generally better on visual data than audio data
(70.8% vs. 60.0%). This might be due to the richer content inherent
in visual data, which contains more implicit contextual informa-
tion. Recent research has shown multimodal models’ capabilities
in answering questions about the context from visual information
[15], thus future work may leverage such multimodal models to
extract explicit contextual information before a prediction task.

8 A MOBILE PROOF-OF-CONCEPT
PROTOTYPEWITH OMNIACTIONS SERVICE

To give an example about how OmniActions’ pipeline serve appli-
cations, we developed an interactive prototype (i.e., an Android
app), which passes the multimodal input to OmniActions and then
executes the predicted follow-up actions.

Figure 12: OmniActions’s user interface, wherein (a-e) a user
could search for the product name on the bag of chocolate
by selecting the follow-up actions suggested by the system.

8.1 Workflow
In this workflow, a user is searching for the product name of the
chocolate online (Figure 12). First, the user clicks the visual or audio
button to specify the modality of information they are interested in.
As the user clicked the visual button (a), the system performs a target
modality prediction and follow-up action prediction. The system
then predicts the target as text (b) and recommends three actions. If
the user finds that the suggested actions do not fit their needs, they
can click the more button to see other actions in the design space
(d). The user then selects the target attribute of the text (“product

name”) (b) and selects the Search Online action (c). After selection, a
pop-up window visualizes the user’s intent to search for the product
name (“MILK CHOCOLATE TOFFEE ALMONDS”) online (e). As
the system does not currently detect all the context automatically,
the user can manually specify a place and activity in the console
(Figure ??) for better prediction performance. Additionally, the user
can toggle between predicting general actions and specific actions
to view the raw results to increase explainability in the console
view as well.

8.2 Implementation
The OmniActions prototype had two modules, a continuous detec-
tion module and a trigger-based detection module. The continuous
detection module classified the sounds and transcribed speech (if
present) in real-time and stored the classified sounds and speech
transcription from the previous five seconds for further processing.
The trigger-based module captioned the captured images to pro-
vide a description, detected objects within the captured images, and
used OCR to identify and extract text in the images. Once a user
triggered the system, OmniActions processed all the information
into a tuple format so it could be used by the fine-tuned model for
prediction.

The system was implemented on a Samsung Galaxy A13 5G
phone running Android version 13.0. The code was developed in
Android Studio using API level 33 and was written in the Kotlin
programming language. The image captioning on the phone utilized
the blip-image-captioning-base via the Hugging Face API, the
object detection used MobileNet V1, and the text recognition used
the Google Cloud Vision API. The audio classification used YAMNet
and the continuous speech-to-text recognition used the Google
Cloud Speech API.

8.3 Preliminary User Feedback
We used a think-aloud protocol [43] to understand how users per-
ceive and use the prototype. Specifically, we are interested in peo-
ple’s reactions to the proactive interface and the prediction errors.

8.3.1 Setup and Method. Five participants with either program-
ming or product development experience were recruited from a our
institution to participate in the study. The participants volunteered
to join the study and they were not paid. The study took place
in a lab designed to resemble a cafe, which enabled everyday life
scenarios such as viewing a menu and interacting with a book on a
bookshelf. During the study, a researcher first walked the partici-
pants through the basic functionality by demonstrating an example.
Participants were then asked to complete six predefined tasks and
verbalize their thoughts while doing so. These include tasks such
as “save the promocode on the gift card for future reference” or
“share the menu in a cafe with your friends”. Lastly, participants
used the system to complete additional free-form tasks of users’
choices (for as many times as they wanted), where they decided
what follow-up actions they’d like to do. Using the think-aloud
protocol, participants were asked to verbalize their intention on
the actions they were taking and then used the system to complete
the free-form tasks. After using the prototype system, participants
completed a questionnaire containing 7 point Likert-based usabil-
ity questions, as well as open-ended questions designed to gather
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qualitative feedback. the study took between 30-40 minutes to com-
plete. We recorded audio during the study for later transcription
and qualitative analysis.

8.3.2 Results. All participants successfully completed the prede-
fined tasks without any assistance. Participants thought the system
was easy to use (M = 4.8 ,𝜎=1.30), they were fond of it (M = 5.6,
𝜎=1.34), and they thought it had potential and promise (M = 5.8,
𝜎=1.64). As the participants experienced the proactive action pre-
diction, they commented on how they could use OmniActions for
their everyday tasks in the future. P3 stated, "having this might
fundamentally change the interaction of future AR interfaces". Omni-
Actions was positively received due to its ability to reduce friction
by predicting the actions (P1, P2, P4).

Note that the system did not always predict the users’ intended
actions correctly. In these cases, the "more" function to quickly
view other potential actions was used. For example, P3 commented
that the "comprehensive overview of available actions was very use-
ful.". This showed the importance to have mechanisms to handle
the scenarios where AI predictions didn’t match users’ intention.
However, some users noted that visiting "more" actions could in-
crease the cognitive load as there were many options to read and
choose from. Participants (P1, P5) found it overwhelming to go
through all the potential actions. To address this challenge, some
participants suggested using hierarchical sub-menus (P1, P3, P5) or
having fewer options while treating some actions as add-ons (P2).
The hierarchical sub-menus could be supported by the prediction
of the general actions (which had high accuracy) and then specific
actions.

Participants also shared areas of improvement for the prototype.
One confusion area is the different interpretation of the wording
for actions. For example, "I thought Save-to-list is saving something
important to me while Save-for-reference is something that is not
important" (P3). P2 also stated "as a developer, I see the value of dis-
tinction between each actions which help me implement the functions
... but as an end-user, I find it confusing to differentiate between them
and understand specific purposes". P2 also mentioned that "trying
to understand the difference between two suggested similar actions
may also increase my cognitive load". Participants suggested adding
content-aware examples to each action to help end-users under-
stand the outcome. Overall, participants were enthusiastic about
OmniActions, saw its value for end-users and developers, and pro-
vided suggestions for its improvement.

9 DISCUSSION
In this section, we reflect on the design and evaluation of OmniAc-
tions. Our insights shed light on the design and implementation
of proactive interfaces for AR use cases. We will also discuss the
limitations of our current data and method, and a future direction
to address these limitations.

9.1 Action Space for Everyday Information
Encounters

As far as we know, our work was the first to identify the set of
actions people tend to take on the information they encounter dur-
ing everyday tasks. The diary study method enabled us to capture
moments of action needs in-situ, covering the majority of everyday

activity types as context. In half of the cases, these activities in-
volved high physical/social/cognitive effort, raising the importance
to reduce the friction to any additional interactions. These every-
day life scenarios captured in our dataset overlap with those in the
Pervasive AR vision, where people use AR anytime and anywhere
[25]. Taking the lens of the Jobs-to-be-done [12], each action was
"hired" to address a human need, such as staying connected, get-
ting emotional support, reducing memory load, and gaining more
understanding, etc. While technology may be fast-evolving, human
needs remain relatively stable.

We understand, however, that actions shared by the participants
in the current study are limited to actions they are familiar with
on their current devices, specifically, phone-based actions. We ex-
pect these actions will be different when AR platforms are widely
adopted and the ecosystems of actions on these platforms thrive.
This kind of socio-technical co-evolution has been witnessed when
we look into the literature about how people handled information
needs with mobile phones decades ago. Back in 2008, people ad-
dressed information needs using the web, map, and calling on the
phone, as well as through physical means (e.g. printing, asking
something) [59]. In contrast, our dataset shows a greater diversity
of actions people can take than before, thanks to the fast evolution
and wide adoption of smartphones. Given the accelerating pace of
technology, we can also expect an increased number of capabilities
and variety of actions supported by future AR platforms with an
always-on sensor stack and increased computational intelligence.
For example, the actions will be more adaptive to users’ contexts
with multi-sensor streams, more proactive with better prediction
of users’ intention from eye tracking, and more tailored to users’
preferences and goals with the first-person perspective cameras etc.
These new computing platforms will be able to provide users with
different actions tailored to the individual to address their everyday
needs in response to information triggers in the world. For the
future systems that predict user’s follow-up actions, developers
will need to update their data over time to reflect the evolution of
the actions, like any AI system would do.

9.2 Actions Prediction with Multimodal
Information

With OmniActions, we created a pipeline that predicts follow-up
actions and target information by turning the multi-modal infor-
mation into structured texts to LLM. Among several state-of-art
LLM techniques, we identified the most performant one (in-context
learning with chain-of-thoughts, using enough examples to cover
the diversity of the actions) that reaches competitive accuracy in
prediction accuracy.

Compared to multimodal LLMs (e.g. GPT-4v) where raw multi-
modal information was used directly as input, our approach has
more transparency and explanability. We could evaluate how much
each of the contextual factors contribute to end-to-end prediction
performance by including/excluding it. We could better leverage
chain-of-thoughts because the reasoning involves multiple contex-
tual factors. We generate the chain-of-thoughts prompts from user
data rather than a researcher’s common sense. For all three LLM
techniques we evaluated (intent classification, fine-tuning, and in-
context learning), their performance relied on the dataset quality.
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Therefore, it is critical to collect up-to-date and relevant data that
covers a wide range of the action space. As we mentioned in the
above section, when the computing platforms like AR evolves, the
action space will change, and the data needs to be updated.

In our work, the collection of data from the diary study and the
use of the data in prediction were two separate steps. We envision
integrating the data with online training. Users wear a lifelogging
system throughout the day (e.g., RayBan Stories11); it captures how
people act upon what information over time and trains/prompts
the model with the data. Users could also later reflect on the data,
identify important information they missed, and label potential
actions related to it. This way the pipeline will gain up-to-date and
personalized data iteratively with the user.

9.3 Handling Predictions Errors
Like many other AI-based predictions, our system makes errors.
With our mobile prototype that leverages OmniActions to surface
actions, we got valuable feedback about users’ reactions and sug-
gestions when the prediction did not match their intention. It is
critical to have mechanisms to recover from error (the "Offer Sim-
ple Error Handling" rule [58]), however, we observed in the user
feedback sessions that presenting a "more" button to list the rest
of the actions may increase people’s cognitive load. One way to
reduce the cognitive load in error handling might be to leverage the
higher-level grouping of actions, which achieved a high accuracy
(94%) in the general action prediction. This would then funnel users
to the right categories of actions from which they could process a
smaller set of sub-actions.

10 CONCLUSION
In this paper, we presented OmniActions, which predicts follow-up
actions when users encounter multimodal information. To inform
the design of OmniActions, we conducted a five-day diary study to
understand of the design space of follow-up actions. Through the
study, we identified 7 general categories of actions (i.e., share, save,
remind, look up, digital extract, media manipulation, and complex
actions) and 17 specific follow-up categories of actions.

We then developed the OmniActions pipeline and prototype to
predict follow-up actions for multimodal information powered by
an LLM. The system harnessed the reasoning capabilities of LLMs
by introducing intermediate reasoning steps (i.e., CoT prompting).
We evaluated three state-of-art LLM techniques, and the results in-
dicated that integrating CoT prompting significantly improved the
system’s performance. Specifically, the model attained 94% accuracy
when predicting top three general actions when using in-context
learning with CoT prompting. We then conducted a user study to
understand users’ feedback towards the action prediction and its er-
rors. The findings demonstrated the potential of OmniActions and
provided valuable insights into possible enhancements for systems
alike.
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A PROMPT TEMPLATES
A.1 Chain-of-Thoughts Prompts

{“role”: “system”, “content”:
“You are an assistant that produces chain-of-thoughts
analysis leading to reasons about why users take spe-
cific follow-up actions from a third-person perspective.
You should operate under the assumption that the goal
is not known to you.
Follow-up actions: Share on social media: Share/upload
on social platforms
Share with others: Send the info to specific entities
Remember: Cherish a specific experience/moment for
later recall
For reference: Store information for later usage or con-
sultation
To list: Add information to a designated, organized col-
lection
Keep track: Record the development of a task or goal
Remind: Make an alert or notice to remember some-
thing later
Search online: Search for more information online re-
lated to specific goals
Recognize: Identify the information using specific tools
(e.g., song names)
Translate: Translate text/speech from one language to
another
Extract and access: Extract and utilize information from
sources
Transcribe: Convert audio to text
Digitize: Transform information to a digital format for
easier access
Compare: Compare similarity and difference between
two sets of info
Calculate: Perform mathematical operations to solve a
problem/task
Edit media: Enhance images or sounds to improve over-
all experience
Augment: Modify media files to accomplish a specific
task
Output in a list of JSON dicts, where applicable: "chain-
of-thoughts", "prediction" (the follow-up actions)” }

A.2 In-Context Learning Prompts to Predict
Target Information

Predicting visual target information:
You are an assistant that predicts the target informa-
tion that users take follow-up actions on when they en-
counter multimodal information using chain-of-thoughts
analysis.
The target information include three categories: scene,
object, text:
scene: users would like to take actions on the whole
visual content
object: users would like to take actions on specific phys-
ical objects they see
text: users would like to take actions on visible text in
the scene
Output the prediction result in a JSON dict, where ap-
plicable: "chain-of-thoughts", "prediction"

Predicting audio target information:

You are an assistant that predicts the target informa-
tion that users take follow-up actions on when they en-
counter multimodal information using chain-of-thoughts
analysis.
The target information include two categories: sound,
speech:
sound: users would like to take actions on acoustic
sound they hear
speech: users would like to take actions on someone’s
speech
Output the prediction result in a JSON dict, where ap-
plicable: "chain-of-thoughts", "prediction"

A.3 In-Context Learning Prompts to Predict
Follow-up Actions

Predicting specific follow-up actions:
{“role”: “system”, “content”:
“You are an assistant that predicts the follow-up actions
users will take based on multimodal information input
using chain-of-thoughts analysis. Provide up to
[NUM_OF_PREDICTION] most likely follow-up actions
from the following options (with definition):
Follow-up actions:
[CATEGORIES]: [DEFINITION] (refer to Figure 7)
Output in a list of JSON dicts, where applicable: "chain-
of-thoughts", "prediction" (the follow-up actions)” },
{ “role”: “user”, “content”: “<example 1>” },
{ “role”: “assistant”, “content”: “<result 1>” },
{ “role”: “user”, “content”: “<example 2>” }
{ “role”: “assistant”, “content”: “<result 2>” }

Predicting general follow-up actions:
{“role”: “system”, “content”:
“You are an assistant that predicts the follow-up actions
users will take based on multimodal information input
using chain-of-thoughts analysis. Provide up to [NUM_OF_PREDICTION]
most likely follow-up actions from the following options
(with definition):
(general)
Share
(specific)
Share on social media: Share/upload on social plat-
forms
Share with others: Send the info to specific entities

(general)
Save
(specific)
Remember: Cherish a specific experience/moment for
later recall
For reference: Store information for later usage or con-
sultation
To list: Add information to a designated, organized col-
lection
Keep track: Record the development of a task or goal

(general)
Remind
(specific)
Remind: Make an alert or notice to remember some-
thing later
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(general)
Look up
(specific)
Search online: Search for more information online re-
lated to specific goals
Recognize: Identify the information using specific tools
(e.g., song names)
Translate: Translate text/speech from one language to
another

(general)
Digital extract
(specific)
Extract and access: Extract and utilize information from
sources
Transcribe: Convert audio to text
Digitize: Transform information to a digital format for
easier access

(general)
Complex
(specific)
Compare: Compare similarity and difference between
two sets of info
Calculate: Perform mathematical operations to solve a
problem/task

(general)
Augment
(specific)
Edit media: Enhance images or sounds to improve over-
all experience
Augment visual/audio: Modify media files to accomplish
a specific task
Output the prediction result in a list of JSON dicts (the
length will be the number of prediction), where applica-
ble: "chain_of_thoughts", "prediction"
Output the general category” },
{ “role”: “user”, “content”: “<example 1>” },
{ “role”: “assistant”, “content”: “<result 1>” },
{ “role”: “user”, “content”: “<example 2>” }
{ “role”: “assistant”, “content”: “<result 2>” }

B CONFUSION MATRICES FOR ALL
APPROACHES

To compute the confusion matrices for each action category, for
each data instance, we need to count both the corrected and incor-
rect predictions for the ground truth label. However, since we are
forcing the model to predict the top-3 likely actions, this would
introduce unavoidable errors which do not reflect the model’s per-
formance. To account for this, we only count the error when there
exists at least one groud truth label that is not correctly predicted
by the model.

The confusion matrices for the following approaches: (1) only
predicting top-3 dominant actions, (2) intent classification, (3) fine-
tuning GPT-3.5, (4) in-context learning with GPT-3.5 are shown in
Appendix Figure 1a to 2b.

Table 4 shows the improvement from in-context learning to fine-
tuning using the same model (GPT-3.5). The results indicate that
the finetuning method is sensitive to the distribution of training

Table 4: Improvement (%) on each action category from in-
context learning to finetuning.

Predicting General Actions In-context
learning

Fine-
tuning

Improv-
ment

Share* 82.7 96.7 +16.9
Save* 78.7 96.9 +23.1

Remind 6.2 0 -100
Look up* 66.9 93.4 +39.6

Digital Extract 56.4 17.9 -68.2
Complex 12.5 0 -100
Augment 40.0 20.0 -50.0

Predicting Specific Actions
Share on social media 78.4 4.5 -94.3
Share with others* 44.9 89.5 +99.3

Remember 70.2 47.8 -31.9
For reference* 26.8 74.2 +176.9

To list 19.2 58.8 +206.2
Keep track 28.6 11.1 -61.2

Remind 6.2 0 -100
Search online* 64.6 70 +8.4

Recognize 25.9 56.7 +118.9
Translate 37.5 25 -33.3

Extract and access 11.1 8.3 -25.2
Transcribe 61.1 16.7 -72.7
Digitalize 16.7 0 -100
Compare 14.3 0 -100
Calculate 0 0 0

Edit media 0 0 0
Augment 10.0 33.3 +233.0

Bolded denotes positive improved categories.

data. Notably, in the case of general actions, the dominant cate-
gories are excessively predominant (>30%) accounting compared to
other categories (<15%). Conversely, in specific actions, the data is
more evenly spread across various non-dominant categories. Con-
sequently, given the current data distribution, finetuning demon-
strates better performance with specific actions than with general
actions.

C GENERATING THE DESIGN SPACE
C.1 Survey Questions for the Diary Study
The survey questions are listed in Table 6.

C.2 Definition of Specific Follow-Up Action
Categories

C.2.1 Share.

Sharing with Others. When sharing with others, future systems
could leverage additional contextual information such as recom-
mending people who have recently expressed their love for dogs
when a user takes a photo of their dog.

Sharing on Social Media. When sharing on social media, future
systems could suggest multiple hashtags to use.
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(a) Confusion matrix for only predicting the dominant actions.

(b) Confusion matrix for intent classification.

Figure 1: Confusion matrices for predicting dominant only and intent classification.

C.2.2 Save.

Remember. This refers to actions where users wished to cher-
ish a specific moment to retrieve it in the future. Remember of-
ten occurred when participants mentioned words such as “funny”,
“memorable”, etc. or alongside other share actions.

Save for Reference. This refers to actions where users stored
information with the specific goal of using it later. Participants
mentioned various types of later usages, including using it for a
later purchase, saving a gift card to avoid losing it, and so on. By
automatically incorporating metadata into the information (e.g.,
when, where, and what type of object), future systems could en-
hance user experiences by enabling quick and efficient retrieval of
the information when needed.

Save to a List. These actions added information to a designated
collection, e.g., music to a playlist. Future systems could leverage
this action by identifying the category of the information (e.g.,
painting, music, groceries, etc.) and store the information in a list.

Keeping Track of Progress. Participants captured information
to record their performance or progress towards specific goals
such as recording the progress of their bulking (or cutting) while
working out or playing the piano. Different from saving to a list, this
information tended to be similar yet sequential in nature, enabling
users to observe and evaluate their growth over time, which could
be supported by future systems.

C.2.3 Look Up.

Search Online. Users conducted online searches to acquire ad-
ditional information related to their intent, utilizing a variety of
search tools (e.g., Google).

Recognize. Users also identified information using specific tools,
e.g., product searching (e.g., using Google Lens or Images) or recog-
nizing music (e.g., Shazam).

Translate. In the context of text or speech, translate refers to the
actions that sought the meaning of text or speech in a different
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(a) Confusion matrix for finetuning with GPT-3.5.

(b) Confusion matrix for in context learning with GPT-3.5.

Figure 2: Confusion matrices for finetuning and in-context learning.

language, enabling one to better understand and communicate
across language barriers.

C.2.4 Digital Extract.

Extract and Access. These actions extracted information from the
physical world and directly took action on it based on its type. For
example, systems could enable users to directly scan and access the
content of a QR code, take a picture of a contact card and directly
make a phone call, or extract an address from text and navigate to
it.

Transcribe. Mostly applying to audio, transcribe refers to actions
that converted audio into text. This included transcribing a lecture
or transcribing the lyrics from a song that was playing.

Digitize. These actions transformed various forms of informa-
tion, such as physical documents or audio, into a digital format
for easier access, storage, or sharing. The most common digitize
actions scanned physical information to create a digital copy for
easier access and sharing. Digitizing audio, for instance, involved

converting voice recordings into digital files, which could then be
added to various media, such as TikTok videos.

C.2.5 Media Manipulation.

Augment Media. Augment refers to actions that enhanced images
or sounds to improve overall experiences. For example, participants
wanted to zoom in to see the details of an object or isolate music
from noise for precise recognition.

Edit Media. This refers to actions that were taken to modify
media files for specific tasks. For example, a participant wanted to
trim a video to share it on social media. Another participant wanted
to crop an image for her slides. These editing actions ranged from
simple adjustments, such as cropping or resizing, to more complex
alterations, such as color grading or adding visual effects.

C.2.6 Complex Actions.

Compare. Compare refers to actions that compared similarities
and differences between two sets of information. One participant,
for example, wanted to compare the price of two similar products.
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This would require a system to retrieve additional information and
present it simultaneously for the user to compare.

Calculate. While only mentioned by one participant, calculate
actions involved performing mathematical operations to solve a
problem or a task, e.g., calculating if the calories one consumed
exceeded their daily limit while cutting weight.

Figure 3: An example of the collected data with four follow-
up actions.

D DATAWITH AGGREGATED ACTIONS
Participants tends to perform multiple actions on the information
they encounter. Figure 3 shows an example of the collected data
with four follow-up actions. In this example, the participant took a
picture of their rabbit as they think the rabbit might be ill. Since the
rabbit will run away if they get too close, the participant decided
to take a picture of the rabbit first from afar to (1) zoom in for
clearer view (augment) and (2) share the picture with a veterinarian
(share with others). They would also save the picture for future
reference (for reference) and could possibly search online for more
information if the veterinarian is not available (search online).

Table 5 shows performance of the model on data with and with-
out aggregated actions.

Table 5: Accuracy (%) on data with and without aggregated
actions (predicting top-3 actions using in-context learning)

Num of actions in data 1 2 3 4 >2 All

General Actions 98.7 91.2 68.6 87.5 85.5 94.3
Specific Actions 73.7 64.1 50.3 79.2 61.1 67.1
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Table 6: Survey questions that participants were required to answer for each diary entry.

# Target: Visual Target: Audio Question type

Q1 Upload your photo or a screenshot of your video. (For video only) Upload a screenshot of your video
(audio as the main target).

[File upload]

Q2 Briefly describe the photo.
e.g., “This is a billboard of the movie Dunkirk showing
when it will be in theater.”

Briefly describe the audio you captured AND wanted
to take follow-up actions with.
e.g., “This is the background music I heard in the cafe.”

[Open-ended]

Q3 Where were you when you captured the data? [Open-ended]

Q4 What were you doing when you captured the data? [Open-ended]

Q5 Please list the physical objects visible in the data. What types of sounds could be heard in the recording?
- Speech / Music / Tools / Environmental noise / ...
- Others [Force answer]

[Multi-type]

Q6 What best describes the information you intended to
take action on?
- The whole scene / environment / place
- Objects in the photo/video
- Text visible in the photo/video
- Others [Force answer]

Please choose the audio information you want to take
action on:
- [Same as in Q5]

[Multiple choice]

Q7 In 1-3 sentences, explain what actions you plan to take on the information in the data you shared.
For example: “Save the date to my calendar.” If you have multiple actions, please list them all.

[Open-ended]

Q8 From the list below, which best characterizes your previous response. Select all that apply.
- [Categories from the workshop]
- Others [Force answer]

[Multiple choice]

Q9 In 1-3 sentences, briefly explain:
(i) the overall goal(s) of taking the above actions.
(ii) the reason(s) why you want to take the above actions when you captured the photo/video.

[Open-ended]
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