
RoCap: A Robotic Data Collection Pipeline for the Pose
Estimation of Appearance-Changing Objects

Jiahao “Nick” Li
UCLA HCI Research

Los Angeles, United States
ljhnick@g.ucla.edu

Toby Chong
TOEI Zukun Research

Tokyo, Japan

Zhongyi Zhou
University of Tokyo

Tokyo, Japan

Hironori Yoshida
Future University Hakodate

Hakodate, Japan

Koji Yatani
University of Tokyo

Tokyo, Japan

Xiang ‘Anthony’ Chen
UCLA HCI Research

Los Angeles, United States

Takeo Igarashi
University of Tokyo

Tokyo, Japan

Figure 1: The RoCap pipeline is a robotic system designed to collect datasets for the purpose of pose estimation of appearance-changing
objects, e.g., a deformable plush toy (a). The system consists of a robotic arm and an RGB camera, which allows for data collection (c)
of objects with appearance-changing features (b). Through data augmentation and training on off-the-shelf deep learning models using
the collected data, the system can effectively estimate the pose of the plush toy during manipulation, even as it transitions through
deformation (d).

ABSTRACT
Object pose estimation plays a vital role in mixed reality interactions
when user manipulate tangible objects as controllers. Traditional
vision-based object pose estimation methods leverage 3D recon-
struction to synthesize training data. However, these methods are
designed for static objects with diffuse colors and do not work well
for objects that change their appearance during manipulation, such as
deformable objects like plush toys, transparent objects like chemical
flasks, reflective objects like metal pitcher, and articulated objects
like scissors. To address this limitation, we propose RoCap, a robotic
pipeline that emulates human manipulation of target objects while
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generating data labeled with ground truth pose information. The user
first gives the target object to a robotic arm, and the system captures
many pictures of the object in various 6D configurations. The system
trains a model by using captured images and their ground truth pose
information automatically calculated from the joint angles of the
robotic arm. We showcase pose estimation for appearance-changing
objects by training simple deep-learning models using the collected
data and comparing the results with a model trained with synthetic
data based on 3D reconstruction via quantitative and qualitative
evaluation. The findings underscore the promising capabilities of
RoCap.
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1 INTRODUCTION
Leveraging existing tangible objects as controllers in mixed reality
(MR) can significantly enhance the immersive experience and allow
for a wider range of tangible motions, particularly for applications
such as storytelling, skill training, and education. For example, em-
ploying plush toys to guide storytelling allows for a personalized and
engaging experience, and using various handheld tools can facilitate
more precise and diverse interaction mechanisms to make tasks feel
natural and intuitive. Such an approach demands the capabilities for
accurate predictions of 6D pose estimation — identifying an object’s
location and orientation in the 3D space.

Vision-based pose estimation has gained popularity in the past
few years over tracker or sensor based methods, as it does not re-
quire additional hardware, alter the appearance or interfere with
the normal use of the objects and it is cost effective and accessible.
Researchers have adopted different approaches including mapping
image feature to the 3D model of the object [20] and matching point
cloud constructed by depth camera [2]. More recently, data-driven
deep learning methods [38, 47] demonstrated accurate predictions of
the 6D pose of pre-defined sets of object included in carefully crafted
datasets [5, 26]. However, it remains unclear how well they work on
objects where carefully labeled data do not exist such as personal
objects. To address this issue, some prior work enables end-users to
collect datasets for everyday objects 6D pose estimation [35, 39], in-
troducing synthetic approaches to generate a large amount synthetic
data given the 3D model of the objects [13], or adopts a few-shot
learning method by training on 3D mesh reconstructed from a short
clip of video [32].

A limitation of these existing methods is that they mainly focus
on objects that are static objects with diffuse colors, with a less
focus on objects that change their appearances when being manip-
ulated, including objects with challenging appearance materials (e.g.,
transparent and specular objects), deformable objects and articulated
objects [45]. A pair of scissors will dramatically change its physical
appearance due to mechanical operation and a model trained on the
image of a closed pair of scissors might produce lower accuracy
at recognizing the same pair in an open configuration. Similarly, a
plush toy that changes its shape during manipulation when being
affected by gravity will affect the performance of the pose estimation.
While one intuitive approach is to capture data while a human user
is manipulating the objects, annotating such data at scale would be
costly and error-prone.

To address the challenge, we propose RoCap, an automated
pipeline to collect image data of appearance-changing object for 6D
pose estimation using a robotic arm with minimum human interven-
tion. We deploy a robot arm to mimic human’s hand to manipulate
the objects while capturing the image data as shown in Figure 1. The
6D poses of the object of each image can be obtained with robotic
forward kinematics as each joint of the robotic arm is precisely
controlled. Specifically, RoCap performs the data capturing process
for eight different appearance-changing objects with deformable,
transparent, reflective and articulated properties (Figure 3).

We also implemented a simple pose estimation pipeline to quanti-
tatively and qualitatively evaluate the pose estimation performance
of the model trained on our collected data comparing against a

Figure 2: 3D reconstructed results for a transparent flask.

few-shot learning pose estimation approach based on 3D reconstruc-
tion (Gen6D [32]). Both the quantitative and qualitative evaluation
results demonstrate that existing work struggles with appearance-
changing objects and our approach shows promise in overcoming
these limitations with improved pose estimation accuracy.

In summary, our contributions are two-fold:

• A robotic data collection pipeline with a 6 DoF robotic
arm which captures and annotates 6D pose data for objects
that change their appearance during manipulation, addressing
limitations in existing data collection methods.

• Quantitative and qualitative evaluations to demonstrate the
feasibility of the pipeline via improved accuracy of appearance-
changing objects pose estimation by comparing with an ad-
vanced pose estimation method in the field of computer vi-
sion.

2 RELATED WORK
2.1 Object pose estimation
Object pose estimation plays a crucial role in various HCI appli-
cations such as augmented reality [2, 19, 20, 44] and robotics and
automation [29]. Over recent decades, researchers have explored
diverse approaches to predict an object’s pose. These includes sen-
sor applications like IMUs, physical marker techniques such as
fiducial markers [17, 24, 46], optic trackers [49] 3D printed embed-
ded QR code [12], computer vision techniques such as color-based
tracking [44], feature point tracking [2] and point cloud alignment
[20]. Recent advancement in deep learning has unlocked new chal-
lenging tasks such as predicting the poses of hand-object interac-
tion [6, 18, 31], articulated objects [30] and other problem setups
[1, 8, 33, 48]. Extending this line of research, RoCap focuses on a
new problem setup where the objects will change their appearance
during the manipulation. Note that RoCap does not contribute new
model architecture or algorithm to improve the performance in the
field of deep learning. Instead, RoCap contributes a novel data col-
lection method and the data captured by the system can serve as
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Figure 3: Example objects for each category that RoCap is focus-
ing on, Viewing-angle dependent: (1) flask, (2) water bottle and,
(3) pitcher, Deformable: (4) flexible frog and (5) stiff anpanman,
Articulated: (6) scissors, (7) spray head and (8) clamp.

great resources for researchers in the community of computer vision
and machine learning to solve the downstream tracking problems.

2.2 Pose data collection
Data-driven deep learning approaches require data annotated with
ground truth labels. Yet, annotating 6D pose data is challenging, as
it is hard to specify 3D bounding box on a 2D image. To address
this, researchers have investigated various methods including three
primary strategies: (i) training on synthesized data, (ii) utilizing
publicly available datasets and (iii) designing interactive tools for
data collection.

2.2.1 Synthetic data. One typical way is synthesizing data with
the available resources such as the 3D model of the objects. This
approach is commonly used in tasks such as object segmentation
[40] and object detection [13]. And a standard way of using synthetic
data in pose estimation is to obtain the 3D model and texture of the
objects first and then render them with different target background
[43]. Although synthetic data can be easily scaled, it comes with
the drawback of a disparity between real and virtual data, which
might impact model performance. Moreover, as illustrated in Figure
2, the necessary step of object reconstruction may fail for our target
objects, such as the flask.

2.2.2 Real-world data. An intuitive way to bypass the issue of syn-
thesized data is to collect data in the real world. In the recent years,
researchers have adopted two major types of data collection meth-
ods. The first is “static object + moving camera”, where the pose
of the object is calculated from the pose of the camera, which can
be read from the embedded sensor. Normally it requires a certain
level of human labor as first couple frames need to be manually
annotated by matching the 3D model to the physical object. For
example, several publically available datasets have been collected
in this way for benchmarking in the pose estimation domain, such
as YCB Video dataset [47], Linemod [3, 21] and T-Less [22]. Addi-
tionally, researchers have also developed interactive data collection
pipeline to collect data on custom objects (e.g., Label Fusion [35].
However, since the objects remain static, it is challenging to capture
the appearance-changing features.

Another approach is “moving objects + static or moving cam-
era”. While effective for capturing appearance-changing objects,
this approach poses challenging for labeling ground truth. For in-
stance, ARnnotate, used in augmented reality [39], requires users to
hold and move the object along a recorded path, leading to potential
errors, especially with objects like articulated items or deformed
plush toys. RoCap adopts this approach and ensures the labeled
ground truth to be precise by calculating the robotic arm’s forward
kinematics while it manipulates the object to capture the appearance-
changing features.

3 APPEARANCE-CHANGING OBJECTS
In this section we define and explain the importance of three cate-
gories of appearance-changing objects that we aim to track using
RoCap. We collected and captured eight items from the three cate-
gories with RoCap.

3.1 Deformation
Deformation refers to changes in the shape or size of an object due
to external forces applied during manipulation (i.e., force of the
hand and gravity). Objects with naturally deformable features can
include soft and malleable objects such as fabric materials, clothing
and plush toys/stuffed animals. During manipulation, the objects are
affected by gravity all the time, leading to the deformation while
the user is moving the objects into different orientation. We picked
two plush toys of different stiffness, anpanman (stiffer) (Figure 3(5))
and frog (more flexible)(Figure 3(4)) as examples of the deformable
objects.

3.2 Viewing-angle dependent
The visual appearance of viewing-angle dependent objects includes
two main sub-categories of objects, transparent objects (e.g., glass)
and reflective objects (e.g., polished metal). Appearance of transpar-
ent objects depends on the background behind them, which may con-
tain the environment and the user’s hands. Tracking and estimating
the pose of such transparent objects is a known challenge [14] and
hand manipulation may make this even harder. Appearance of reflec-
tive objects on the other hand depends on the environment in front
and around it. We picked a conical flask and a plastic bottle(Figure
3(1, 2)) as representations of transparent objects of different level
of translucency (Figure 7b). We also included a reflective pitcher to
represent reflective object.

3.3 Articulated
Objects with articulated features refer to objects whose appearance
changes through manual manipulation or interaction. These changes
can occur due to the inherent function of the physical objects. For
examples, various handheld tools will change their mechanical forms
while being manipulated by human. We selected three manually-
changing objects: a clamp, a pair of scissors and, a head of spray
bottle to represent two different types of manual gripping and hand
operation (holding and pinching).
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Figure 4: Overview of RoCap. RoCap pipeline consists of camera calibration (§4.1), data capturing (§4.2), data labeling (§4.3),
data processing (§4.4) and data augmentation (§4.4). By training on an existing deep learning framework, RoCap achieves object
segmentation, state classification and pose estimation for appearance-changing objects.

4 ROCAP PIPELINE
In this section, we will introduce the design of the RoCap pipeline,
which is easily replicable using any 6-DoF robotic arm, we docu-
ment the essential knowledge and technical challenges addressed
including (i) camera calibration, (ii) data collection, (iii) data label-
ing and (iv) data pre-processing. Figure 4 shows the overview of the
RoCap pipeline and we discuss each step in details as follows.

4.1 Eye-to-hand camera calibration
The first step of RoCap pipeline is to calibrate the camera to the
robotic arm (Figure 4a). During data collection, the robotic arm will
hold the target object using a gripper and the camera is standing on
the side to capture the images. In this setup, the pose of the object in
the image refers to the homogeneous transformation of the object
from its reference frame to the camera’s reference frame. This is a
typical hand-eye calibration problem because as shown in Figure 5.
Assuming the object has the same pose as the end-effector, the goal
is to calculate the transformation matrix of the gripper to the camera:
cTg, which can be calculated from the following equation:

cTg = cTb ·b Tg (1)

In which bTg refers to the transformation from the gripper to the base
of the robotic arm which could be calculated by forward kinematics
[10] while cTb refers to the transformation from the base of the
robotic arm to the camera frame, which is unknown.

To calculate cTb, a camera calibration step is required which can
be accomplished by using a checkerboard with known size of the
squares, which is illustrated in Figure 5b . By moving the robotic arm
to multiple configuration, cTg can be calculated from the following
AX = XB equations:
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Here cTt refers to the transformation from the checkerboard to the
camera frame, which can be calculated knowing the size of the
pattern [37]. Then the calibration target cTb can be calculated from
Eq. 1.

After the camera is calibrated, the next step is to capture the image
data of the objects.

4.2 Data collection
As mentioned in the previous sections, RoCap collect data of the
objects that exhibit the appearance-changing features. More specifi-
cally, RoCap collects objects categorized in four types of appearance-
changing features: deformable, reflective, transparent and articu-
lated.

4.2.1 Pose coverage. The goal of the capturing is simple: capture the
images of the objects from as many angles as possible to have a good
coverage of all the potential pose. Quaternions possess the advan-
tage of representing each rotation without introducing any ambiguity.
However, directly sampling quaternions proves to be a challenging
task. To overcome this obstacle and achieve comprehensive coverage
of poses, we opt for sampling Euler angles with a specific step of
degrees for each yaw, pitch, and roll channel. Once we have ob-
tained the Euler angles, they are converted into quaternions. These
quaternions are then utilized to calculate the arc distance between
each orientation. This methodology is employed due to the inherent



RoCap: A Robotic Data Collection Pipeline for the Pose Estimation of Appearance-Changing Objects Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Figure 5: Illustration of the eye-to-hand camera calibration (a). The robotic arm grip a checkerboard and move to multiple positions
and orientations for an accurate calibration (b).

Figure 6: Pose coverage in RoCap capturing pipeline.

redundancies that can arise from sampling Euler angles. By comput-
ing the arc distance of quaternions, we effectively eliminate these
redundancies. The threshold for eliminating redundancies is set at
0.35, roughly equivalent to a 20◦ azimuth angle.

However, due to the hardware limitation of the robotic arm (e.g.,
the joints may have a limited range of motion), RoCap cannot cover
the whole possible poses sampled in this process. We use the in-
verse kinematics solver and path planners in ROS and achieve the
final sampling of the poses RoCap supports. Figure 6 visualizes the
coverage of the poses in RoCap. Noted that in existing data collec-
tion method where the objects are placed on floor, there will be at
least half of the poses not capturable because it is occluded by the
contacting ground.

4.2.2 Capturing process. During the capturing, a human user will be
required to hand the target object to the robotic arm and the robotic
arm will move along the designed path and the camera capture the
RGB images on each sampled point.

For deformable, reflective and transparent objects, there is no fur-
ther actions from the users as the change of the appearance happens

naturally when the object is oriented to different direction while
being manipulated by the robotic arm 7abc. For articulated objects,
actions need to be taken in order to change the mechanical states of
the objects. The manually-changing action can be achieved either by
human or the robotic arm automatically depending on the capability
of the robotic arm to change the appearance. As is shown in Figure
1b, the size of the clamp is small enough to be grasped by the gripper.
And the clamp is expected to have multiple states such as closed,
open, and mid-open states. Without the help of human, the gripper
could be able to change the states of the clamp by applying different
forces on the parallel grippers. However, for the pair shown in Figure
7d, the robotic gripper is not able to automatically change the states
because the handle is too wide for the parallel gripper when it is
in open state. This is a typical robotic manipulability problem as
mentioned in [29]. For the case that a robotic arm cannot establish
firm gripping on the object, a human operator will be required to
manually change the opening angle of the scissors in the interval
between the capturing of different states.

4.3 Data labeling
The transformation from the base frame of the robotic arm to the tar-
get object is logged for each captured image in a 4×4 homogeneous
transformation matrix. Then the transformation from camera frame
to the object could be calculated using Equation 1. The rotation and
the translation serve as the 6D pose label for the object in each image
as shown in Figure 4c left.

4.4 Data processing and augmentation
After capturing the data with the ground truth labels of objects
using RoCap, crucial processing step must be performed to facilitate
subsequent pose estimation training. A typical object pose estimation
task comprises two subtasks: (i) segmenting the object from the
scene, and (ii) predicting the orientation of the segmented object.
Therefore, the processing steps involves generating object masks for
each label and augmenting the data to adapt to various environment
in application.

4.4.1 Generating masks. RoCap leverages the recent emergence
of Segment-Anything Model (SAM) [25] which is capable of pro-
ducing high quality segmentations given points or bounding boxes
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Figure 7: RoCap captures the appearance-changing feature of deformable objects (a), viewing-angle dependent objects including
transparent objects (b) and reflective objects (c), and objects with articulated features (d). Human operator is needed if the robotic arm
is not able to change the states automatically (d).

Figure 8: Data processing of data collected in by RoCap. RoCap generates mask for each image (d) by prompting SAM with bounding
box (b) and points (c).

as prompts. For each image captured by RoCap, the subsequent
procedures must be executed:

Bounding box. As the camera is calibrated to the robotic arm’s
coordinate frame, we generate the initial bounding box of the object
by assuming the robotic arm is holding a 15x15x15 cm cube. We
then project the cube’s coordinates onto the camera’s 2D plane
to obtain the bounding box (Figure 8b). Generally, this method
yields satisfactory masks for objects that are distinct and easily
identifiable in the image. However, complications arise when objects
are partially obscured by the robotic arm, difficult to distinguish
(e.g., a flask whose appearance is influenced by the background), or
even entirely invisible. To address these challenges, an additional

filtering process is introduced. This process either segments the
semi-occluded objects or discards the invisible data.

Filtering. To improve the quality of the masked objects, we lever-
ages the interaction with SAM by providing additional prompts
(points) to specify the objects and background (Figure 8c). Specifi-
cally, we incorporated two additional steps: (i) we provide additional
prompts for the SAM to highlight the object’s location and (ii) we
wrap the gripper in green tape to reduce its potential interference
with segmentation performance.

• Providing additional prompts for the SAM to highlight the
object’s location. Given that the gripper consistently holds
the objects, we can infer that the center of the 15x15x15 cm
cube corresponds to the object.Thus, we add the projected
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pixel coordinate of this center as a point prompt for the SAM,
indicating the object’s location.

• Removing green background. Given that the gripper can
partially obscure the object, it might predominantly appear
within the bounding box. This could lead the SAM to mis-
takenly segment the gripper as the target object. To coun-
teract this, we detect the green regions in the image, which
are presumed to represent the gripper. We then calculate the
geometric center of these regions and use its coordinates to
provide the SAM with a prompt, pointing out the undesired
areas.

4.4.2 Data augmentation. We augment each masked image of the
object with random exposure, contrast, saturation, etc. via Albumen-
tations [4] to achieve better generalizability.

5 EVALUATION
To demonstrate the feasibility of our data collection pipeline, we
conducted both quantitative and qualitative evaluation of the model
trained on our data to compare with a few-shot learning pose esti-
mation approach Gen6D [32]. Gen6D has shown competitive perfor-
mance on any custom object by using a single video as input for 3D
reconstruction (via COLMAP [41]) and performed feature matching
based on the image and resulting pointcloud.

We evaluated the model in two settings, controlled setting where
the ground truth can be reliably obtained for quantitative evaluation,
and application setting, where the user manipulates the object during
pose estimation for qualitative evaluation, as the ground truth pose
cannot be obtained easily.

5.1 Implementation of pose estimation pipeline
Before we delve into the result of quantitative evaluation, We will
discuss the pose estimation pipeline first. As mentioned earlier, the
pose estimation pipeline should consists of one model for segmenting
the target object and another for predicting the orientation based on
the segmented output. For objects with manually-modifiable states
(e.g., scissors), an additional state classifier is employed.

For the segmentation task, we leveraged a recent advancement
based on SAM: HQTrack [50]. It is a zero-shot approach and requires
no training while being able to consistently produce high-quality
segmentation of target objects in videos.

For the orientation estimation, the model is a VGG16 model,
pretrained on ImageNet [11], followed by a fully connected layer
outputting the quaternion and the 2D pixel location of the object.
The loss function is a combined loss of the Geodesic Loss on the
quaternion prediction and the MSE Loss of the displacement pre-
diction. We train the model on the augmented data for 120 epochs,
using the Adam optimizer with a learning rate of 0.0001.

For the state classification, the model is a MobileNet V3 [23],
pretrained on ImageNet [11], followed by a fully connected layer,
and the output dimension is equivalent to the number of the states
of the object. We train the model on the augmented data for 120
epochs, using the Adam optimizer with a learning rate of 0.0001.

5.2 Quantitative evaluation
For quantitative evaluation, we modified the environment by chang-
ing the camera angle and updating the background (Figure 9). Using

Figure 9: Quantitative evaluation setup. The green bounding
box represents the ground truth and the read bounding box
represents the predicted pose.

a newly designed trajectory for the robotic arm, we sampled 1041
data entries. The accuracy threshold for pose estimation remained
consistent with our training data parameters: set at 0.35 or an azimuth
angle of 20◦.

To clarify, our evaluation only focused on the accuracy of the
orientation prediction, since RoCap rely on prior to determine the
position of the object. For Gen6D, we could not modify its training
pipeline to incorporate HQTrack to enhance its object detection.
Instead, we adhered to the guidelines provided for pose estimation
on custom objects as outlined in Gen6D’s guidelines1. Specifically,
we performed 3D reconstruction of the object using COLMAP [41]
and followed the preprocessing procedure in the guideline.

For objects with multiple manual states, test data is gathered for
each state, and the model is evaluated accordingly. The results repre-
sent the mean accuracy across all states. Specifically, the flask was
tested against two different backgrounds: its original setting (a black
background) and an alternate setting with a typical orange-colored
desk surface. Table 1 shows the accuracy comparison between our
approach and Gen6D.

We note that the accuracy is much lower in our testing result as
compared to the result Gen6D demonstrated in their paper. This
could be due to several factors:

• 3D reconstruction failures (e.g., Figure 2).
• Data collection with objects in static positions, leading to

challenges when the object’s unseen side becomes visible
during manipulation (e.g., a plush toy might be placed face-
up on a table during data collection).

1https://github.com/liuyuan-pal/Gen6D/blob/main/custom_object.md

https://github.com/liuyuan-pal/Gen6D/blob/main/custom_object.md
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anpanman frog pitcher flask bottle scissors clamp spray
RoCap 91.9 61.9 73.7 87.1(66.9) 71.9 83.4 42.0 87.6
Gen6D [32] 19.6 12.9 12.7 16.2 16.9 38.3 19.4 28.4

*The number in parentheses indicates flask accuracy in a different background (Figure 9).

Table 1: Quantitative evaluation result. The numbers indicate the average precision at 20◦ azimuth error.

• Gen6D’s documented issue with size-changing objects in
frames (as the object moves closer and further away from the
camera), as mentioned in their GitHub issues2.

The results indicate that a simple pose estimator trained with data
from RoCap can deliver relative working pose estimation perfor-
mance. However, the quantitative findings also reveal some limi-
tations. For example, the accuracy of clamp is relatively low com-
pared to other objects due to ambiguity caused by its symmetry.
Additionally, objects whose appearances are environment-dependent
demonstrate inconsistent performance under varying backgrounds.
More details are discussed in the limitation in Sec. 6.1.

5.3 Qualitative evaluation
To test the performance in the application setting, due to the difficulty
in collecting ground truth, we conducted a qualitative evaluation on
videos of humans manipulating the objects. Figure 10 shows the
qualitative comparison between model trained on RoCap data and
Gen6D. For example, RoCap recorded both closed and open states
during data collection for the pair of scissors. This allowed it to
provide viable pose estimation for the open state (Gen6D which
struggled with the unobserved state). Please refer to the supplemen-
tary materials for the video.

6 DISCUSSION
6.1 Limitations
The quantitative and qualitative evaluation has demonstrated the
feasibility and potential of our data collection method. However, the
result also shows certain limitations. Below, we will discuss the lim-
itations from the perspectives of data capturing, model performance
and other constraints.

Data capturing. While RoCap addresses the data capturing of
appearance-changing objects, it requires the objects have distinct
appearances in different defined poses. One typically example that
is challenging for RoCap is cloth, which is highly deformable. Its
extreme flexibility results in a loss of the pose information when
being manipulated by the robotic arm. As illustrated in Figure 11, the
piece of cloth is nearly identical in two different poses manipulated
by the robotic arm.

On the other hand, as currently we target objects that people can
easily change their appearances with hands, leading to the target
object size ranging from 0.5x~1.5x of a palm size. Additionally,
our robotic arm’s mechanical gripper, with a maximum gripping
width of 80mm, further constrains the size of objects it can handle.
However, this limitation can be resolved when a system applies our

2https://github.com/liuyuan-pal/Gen6D/issues/29

method to a larger scale robotic arm (e.g., in a mass manufacturing
setting).

Model performance. Indicated in the evaluation results, the pose
estimation pipeline does not handle symmetric object well. While
this has been an open challenge in object pose estimation [45], recent
work have proposed different network architecture to address this
issue [42, 47]. While addressing symmetry is beyond the purview
of this paper, future enhancements could incorporate a sophisticated
pose estimator or gather supplementary data like depth via depth
cameras.

Furthermore, variations in the environment from the capturing
stage may also affect the model performance, especially for viewing-
angle dependent objects. While it is feasible to maintain an environ-
ment similar to the capturing setup (e.g., using a black background
when operating a transparent flask), future improvements could
include varying environmental factors such as different lighting
conditions [9, 36]. Additionally, future work could introduce other
augmentation method such as [51] to adapt to various environment.

Other constraints. Currently the need of a robotic arm may re-
quire a lab setting. However, the pipeline can also be applied to
scenarios such as (i) product manufacturers collect data and train a
model for their product, and include it as part of their solution pack-
age and (ii) home users asks their robot to train a model for their own
object when robots are more accessible in the future, and later the
user uses the model to estimation the pose in specific applications.

6.2 Handling Occlusion
Occlusion happens in different scenarios, including the objects being
manipulated by hands during interaction, or the objects being held
by the robotic arm during data capturing. While the hand occlusion
does have an impact on the model performance trained on RoCap
data, our pipeline is less impacted compared to Gen6D as shown in
the qualitative results. This is due to the fact that during the capture
phase, the robotic arm may partially obscure the object throughout
the capturing process, which simulates hand occlusion in the training
data.

To further address the occlusion problem, one possible approach
is to introduce a hand-like robotic hand during the data capturing
process. For example, anthropomorphic robotic hands, such as those
presented in [15], can closely mimic human hand movements and
provide more realistic interaction scenarios for data collection. By
using a robotic hand, it is possible to better account for occlusions
that occur during human-object interactions and develop models that
can better predict user intent in such cases. Additionally, to address
occlusion caused by the robotic arm during data capturing, multiple
cameras could be employed to ensure the complete visibility of the
objects being captured.
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Figure 10: Qualitative evaluation of the eight objects.

Figure 11: Failure case for a highly deformable cloth.

6.3 Automatic Changing of Mechanical States
As mentioned in the paper, certain articulated objects necessitate
human intervention to change their states, as they cannot be ma-
nipulated by the parallel gripper of the robotic arm [29]. Examples
of such objects include those that require a large range of motion
or those that demand bi-manual operation. Recent research in HCI
has proposed different methods of attaching mechanisms to the
physical object to automatically actuate the motion without human
intervention [27–29], which can be potentially leveraged by future
data collection system using robotic arms to automatically collect
a large amount of data. By automating the data collection process,
it is possible to scale up the dataset and sample object states at
smaller intervals. For instance, instead of having discrete states of
a clamp, we can sample from a continuous parameter space evenly
while capturing. This would enable the prediction of the continuous
parameter such as the angle of a pair of scissors, thus opening up a

wider range of applications. Future direction should include how to
design mechanisms that will not affect the apperance of the objects
during capturing while being able to actuate the objects.

6.4 Leveraging Robots for Large-Scale Data
Collection

Robots possess the capability to perform repetitive tasks consistently
and efficiently. Researchers in computer vision and HCI have ex-
plored various approaches to employing robots for data collection
across a diverse range of applications [7, 16, 34]. This has opened
up new opportunities for augmenting tasks that necessitate a substan-
tial amount of repetitive work, such as data collection for multiple
objects, through the integration of robotic systems. By leveraging
robotic systems, researchers can not only streamline the data col-
lection process but also minimize human error and fatigue. This
can lead to the acquisition of more accurate and reliable datasets,
which are critical for the development and evaluation of advanced
algorithms and models.

In addition to automating repetitive tasks, robotic systems can
be equipped with various sensors and end effectors to collect multi-
modal data, such as visual, tactile, and auditory information. This
can significantly enrich the datasets and provide researchers with a
more comprehensive understanding of the objects and environments
being studied. As robotics technology continues to advance, we can
expect even more sophisticated and versatile robotic systems to be
employed in the data collection process. This will ultimately lead to
more robust, accurate, and diverse datasets, which will contribute to
the improvement of various computer vision and HCI applications.
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7 CONCLUSION
In this paper, we present RoCap, a robotic pipeline for data collection
of appearance-changing objects. This system addresses the challenge
of pose estimation for objects with deformable properties (e.g., plush
toys), viewing-angle dependent properties including transparent ma-
terials (e.g., glass flasks) and reflective materials (e.g., pitcher) or
objects to be actuated with multiple mechanical states (e.g., clamps
or spray bottle heads). By employing a robotic arm to hold these
objects and capture image data, which can be utilized by anyone
possessing a 6 DoF robotic arm, we can train a simple deep learning
model to perform pose estimation on the objects. We conducted both
quantitative and qualitative evaluation of our approach comparing
to a few-shot learning framework, which was trained on 3D mesh
reconstructed from a video. The results demonstrated the feasibility
and potential of RoCap.
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